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This paper is concerned with the nonlinear and linear thermomechanical theories of
deformable rod-like bodies in which account is taken of electromagnetic effects. The
development is made by a direct approach with the use of the one-dimensional
formulation of a theory of directed media called a Cosserat curve. The first part of the
paper deals with the formulation of appropriate nonlinear equations governing the
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312 A.E.GREEN AND P. M. NAGHDI

motion of a rod in the presence of electromagnetic and thermal effects. In the second
part of the paper, emphasis is placed on the linearized version of the theory, a general
discussion of the linear constitutive equations and determination of the constitutive
coeflicients, along with applications in a number of special cases including a magnetic
thermoelastic rod and a non-conducting rod in free space.

1. INTRODUCTION

Electrodynamics of continua is a subject of considerable importance, with applications to both
solids and fluids. As with continuum thermomechanics, when electromagnetic effects are absent,
considerable difficulties present themselves in application of the three-dimensional theory to
bodies with special geometrical features such as shells and rods. Usually some procedure is then
introduced to reduce the theory to two-dimensional form for shells (and plates) and to
one-dimensional form for rods (and beams). In the presence of electromagnetic effects, no
general theory seems to be available for rods, although some work has been carried out for
special problems in the linear piezoelectric theory of rods by Mindlin (1976). Previously, Green
& Naghdi (1983, 1984) have developed a general theory of shells in the presence of
electromagnetic effects and have applied the theory to a number of special cases involving both
finite and small deformations. The purpose of the present paper is to discuss the corresponding
developments for rods. Thus, using a direct approach based on a one-dimensional continuum
model known as a Cosserat (or a directed) curve, we discuss here nonlinear and linear theories
of deformable rod-like bodies in which full account is taken of both electromagnetic and thermal
effects. The one-dimensional continuum model, designated as %, comprises a material curve
< embedded in a Euclidean 3-space together with two deformable vector fields — called
directors — attached to every point of the material curve of #Z. The directors, which are not
necessarily along the unit principal normal, and the unit binormal vectors to the material curve
have, in particular, the property that they remain unaltered in length under superposed rigid
body motions. The body # with two directors is the simplest model for the construction of a
general bending theory of slender rods. When the directors are absent, it represents a material
curve appropriate for the construction of string theory. Theories which use more than two
directors to represent various mechanical features of the rod-like body can be established
similarly (see Naghdi 1979, §2), but the thermal and electromagnetic parts of the theory remain
the same as those of the present paper.

The development of a complete theory of a Cosserat or a directed curve with two directors
begins with a paper of Green & Laws (1966). A further development of the basic theory of
a Cosserat curve along with certain general developments regarding the nonlinear and linear
constitutive equations for elastic rods is contained in the work of Green ¢t al. (1974). An account
of the details of the basic theory is given in a recent paper by Naghdi (1982, part B), where
additional relevant references on the subject can be found. The developments just referred to
are made in the context of a thermomechanical theory of rods in which allowance is made for
temperature changes only along some reference curve, such as the line of centroids, of the
(three-dimensional) rod-like body. More recently, the scope of the thermomechanical theory
of rods has been enlarged by Green & Naghdi (1979), who incorporated into the basic theory
the effect of temperature changes in the cross-section of the rod. This development is achieved
by means of an approach to thermomechanics in the three-dimensional theory introduced


http://rsta.royalsocietypublishing.org/

THE ROYAL A
SOCIETY /A

PHILOSOPHICAL
TRANSACTIONS
OF

A

a
s

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

ELECTROMAGNETIC RODS 313

earlier (Green & Naghdi 1977), which provides a natural way of introducing any number of
different one-dimensional temperature fields at each material point of material line & of #.

We now turn to some background information concerning electromagnetic effects. At
present, a (three-dimensional) theory of deformable media in the presence of electromagnetic
effects may be developed at a number oflevels of generality. One approach is based on a mixture
theory in which the thermomechanical continuum is one constituent interacting with electric
particle continua which, in turn, are acted upon by forces due to the electromagnetic fields.
Another approach, adopted here, is to ignore details of the electric particle continua and
consider only a single phase theory in which the continuum is acted upon directly by
electromagnetic forces. We use an approximate non-relativistic theory in which the balance
equations and also Maxwell’s equations are invariant under a Galilean transformation of the
form

r¥t = Qr¥+ A, =1t

where r* is the position vector of a material point of the body, ¢ denotes time, the use of a
superscript plus sign (as in #** and ¢*) refers to the corresponding quantities as a consequence
of superposed rigid body motions, 4 is a constant vector and Q is a constant orthogonal tensor.
In addition, constitutive equations are to be unaltered by a constant superposed rigid body
velocity and a constant superposed rigid body rotation. With these limitations, many authors
have derived values for the three-dimensional electromagnetic force f¥, the electromagnetic
couple ¢¥ and the rate of supply of electromagnetic energy w*, and have discussed various
constitutive relations. A survey of the various theories on the subject, together with extensive
references, is given in a monograph by Hutter & van de Ven (1978). The survey of
electromechanical interaction effects is presented in the form of five models, which the authors
(Hutter & van de Ven 1978) refer to as the two-dipole models (i) and (ii), the
Maxwell-Minkowski model, the statistical model and the Lorentz model. Although these
models yield different values for the electromagnetic force, couple and rate of supply of
electromagnetic energy, Hutter & van de Ven (1978) show that for a certain class of constitutive
equations all theories are equivalent within the non-relativistic approximation. For our
purpose, we select here three-dimensional values for f¥ ¢} and w* which are a slight
modification of the Maxwell-Minkowski model discussed by Hutter & van de Ven (1978). As
will become evident, the theory for rods based on a Cosserat curve £ (with two directors) will
reflect the properties of this model, whose main equations are summarized in Appendixes A
and B.

Specifically, the content of the paper is as follows. First, with reference to a Cosserat curve
R, in §2 the basic thermomechanical theory with extensions to electromagnetic effects is
summarized and the consequences of the conservation laws in direct (coordinate free) notation
are recorded in both spatial and material (or referential) forms. This is followed in §3 by
appropriate electromagnetic balance equations for a moving rod-like body. These balance laws
are analogues of corresponding conservation laws in the three-dimensional theory, which are
summarized and discussed in Appendixes A and B. In §4, we consider constitutive equations
for a magnetic, polarized thermoelastic Cosserat curve .

In the next four sections (§§5-8) emphasis is placed on the linear theory, although some of
the developments, e.g. the first part of §6, are discussed in the context of the nonlinear theory.
Thus, a linear theory of a thermoelastic magnetic Cosserat curve appropriate for a straight rod

21-2
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314 A.E.GREEN AND P. M. NAGHDI

with a uniform cross-section is discussed in some detail in §5, with special cases elaborated upon
further in §§6 and 7. The constitutive coefficients of the linearized theory of §5 are identified
with the help of the results calculated in the context of the three-dimensional theory in Appendix
C with the help of a number of results in Appendix B. The results of §6 are obtained in the
spirit of a restricted theory (corresponding to the Bernoulli-Euler beam theory) and those of
§7 are developed for a non-conducting rod in free space under isothermal conditions and in
the absence of body force and applied tractions over the major surface of the rod. The linearized
theory of §6 is further specialized and applied in §8 to isothermal forced vibrations of
piezoelectric rods. Finally, the remaining two sections of the paper (§§9 and 10) briefly deal
with an alternative representation of the theory for rods of rectangular cross-sections, which
are particularly appropriate for elastic rectangular wave guides and piezoelectric rods.

2. SUMMARY OF THERMOMEGHANICAL THEORY WITH EXTENSIONS TO
ELECTROMAGNETIC EFFECTS

We summarize the main kinematics and basic equations of the thermomechanical theory
of a Cosserat curve based on the work of Green & Laws (1966) in the form developed by Green
etal. (1974), Green & Naghdi (1979) and Naghdi (1982). Let the particles of the material curve
& of the one-dimensional continuum £ introduced in §1 be identified with a convected
coordinate { and let the material curve in the present configuration at time ¢ be referred to
as c. Further, let » be the position vector of ¢, and d, (@ = 1,2) the directors at . A motion
of Z is then defined by

r=r{t), d,=d,¢1t), [d,d,a;]>0, (2.1)

where a, = a,({,t) = or/og (2.2)

is a vector tangent to the curve c, and the directors remain unaltered in magnitude when the
Cosserat curve is subject to superposed rigid body motions. The velocity and director velocities
are given by

v="7 1), w,=d,(1), (2.3)
where a dot denotes a material time derivative with respect to ¢ with { held fixed. In the reference
configuration of #, which we take to be the initial configuration, let the material curve Z be

referred to by C and denote the position vector of C by R, the tangent vector to C by 4, and
the initial directors by D,. Then

R =R({) =7((0), 4,= 4, =R/ = ay(¢, 0),}

(2.4)
D, =D, =d,(&0).

We define a set of linearly independent vectors d; and their reciprocals d*(i = 1,2, 3), and
the corresponding values D;, D¢ in the reference configuration, by the formulae

d,=a, di-d;=8, D,=A4, D‘D,=04l. (2.5)
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ELECTROMAGNETIC RODS 315

In addition, let a; be a set of orthogonal base vectors and a’ their reciprocals such that a,, a,,
v are unit vectors and

1 — 2 — . . — . -
a'=a,, a®=a, a;=aza; a,a;=70, a, a;=0,
— 3 — 43,4 — - [—

v=a,/a;, = a’az,, 0a;/0{ = Ca;=c,a" =c;a, (2.6)

00 = 0o =0, C1pF6y =0, Cuytey, =0, 0agy/08 = 20y,
L=a ®a’, a,=La,. i
The vectors a,, a, may move with the curve in any way prescribed subject to (2.6), and they
are functions of ¢, ¢. The corresponding values of v, a;, a’ and C in the reference configuration
are denoted by yv, 4;, A* and ;C, respectively.
We now recall the equations of mass conservation, momentum, director momenta and
moment of momentum, which in spatial form are given by

d (£
3| pds=0, ds= ai, dg, (2.7)
&
d (& (&}
&L wrmas = [ pireso astmig, (2.8)
& ] '
d (% (4
gtfg p(y**v+yPwp) ds=J; {p(l“+lg)—k“3}ds+[m"‘]§j, (2.9)
d [
[ ot x ) b (ot ity s
&

143
=f p{rx(f+fe)+da><(l°‘+lg)+ce}ds+[rxn+daxm"‘]g2. (2.10)

i
In (2.7)-(2.10), p = p(&, ¢) is mass per unit length of c, y*, y** are inertia coefficients which
are functions of ¢, independent of ¢, n = n({, ¢) is the contact force vector, m* = m*({, ¢) are
contact director force vectors, each a three-dimensional field in the present configuration,
f=/f(&¢) is the assigned force and I* = I%({,¢) are the assigned director forces, each a
three-dimensional vector field per unit mass of c. Also, the quantities f,, I%, ¢, are, respectively,
the force vector, director force vector and (axial) couple vector per unit mass due to the
electromagnetic fields, k*2 are the intrinsic forces (previously denoted by a;;é k*), and on the
right-hand side of (2.7)—(2.10) we have used the notation

(A& 018 = S (6o ) =f 160, 0)- (2.11)

The assigned field frepresents the combined effect of (a) the stress vector on the major suriace
of the rod-like body denoted by f, and (b) an integrated contribution arising from three-
dimensional body forces, denoted by f,. A parallel statement holds for the assigned fields I*
(see equations (B 5) of Appendix B). Therefore, we may write

f=htlfs =K+ (2.12)
The force f,, director forces I2 and couple ¢, are due to the integrated contributions from the

three-dimensional electromagnetic fields, and it is convenient to keep these separate from (2.12);
in this regard, see also equations (B 5) of Appendix B.
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316 A.E.GREEN AND P. M. NAGHDI

Balance equations may be stated in material form by replacing p, ds and k** in (2.7)—(2.10)
by gp, dgs = A%m d¢ and gk*3, respectively. With this in mind, it follows that field equations
corresponding to (2.7)—(2.10), or to the material forms of these equations, are:

ptpdiv,o =p+pad /0l =0 or paj, = gpdi, =2,
A@+y" dog) = A(f+fe) +0n/0,

A% 9+ yaby) = A(I*+12) — k*+0m* /O, (2.13)
od,
/\ce+a3 X n+da X k“+—zf>< m* =0,
where k* = k“3a§3 = Rk“"‘Aia. (2.14)

The balances of entropy and energy for every part of the material curve c in the present
configuration, with some change of notation from Green & Naghdi (1979) in order to simplify
the representation of the various entropy and heat functions, are

d & €3
— | pnds= f p(s+§&) ds—[k]%,
dt Jg, &

&
4 e (2.15)

[
— | prynds= p(sprn+Eprn) ds— [kpr a1,
de ), 4 &

for M+N=K,K=1,2,...,P, and

d [
Y {e+%(v'v+2y°“v~wa+y“ﬂwa'wﬁ)}pd3
&

Jo b2 ‘
— [T+ B et (g o 1,4 s

+|:n~v+m“~wa—h— 5 /zMN]gz. (2.16)
K=1 &

The summation Y% _, is over all values of K = M+ N where M, N are integers or zeros. In
(2.15) and (2.16), 5, 7,, 5 are entropy densities, € is internal energy density, &, &, are entropy
fluxes, A, h,; 5 are heat fluxes, §, £,,y are internal rates of production of entropy, s, sy, 5 are
external rates of supply of entropy, 7, 7y, 5 are external rates of supply of heat, and r = s,
TN = Omn Sy b= 0k, hysy = Ongn kpg > where @ > 0 and 6, are temperatures, and there
is no summation over M, N where they appear twice. The quantity @ represents the rate of
work of the electromagnetic couple ¢, together with the rate of supply of electromagnetic energy
due to the electromagnetic fields. The external rates of supply of entropy s, 55, consist of two
parts, one due to the entropy supply across the r:ajor surface of the rod and the other due to
integrated volume supplies of entropy through the rod, as indicated in (B 6).

Similar balance equations hold in material form by replacing p, ds in (2.15) and (2.16) by
rP> dgs. Field equations which correspond to (2.15), (2.16) or their material forms are

A = A(s+§)—0k/0E, }

(2.17)
Ay = Ay +Emn) — Ok n/08,
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ELECTROMAGNETIC RODS 317
and
A(—€+01+2 Oy y i) FAD—A(OE+2 Opyn Engn) FP—(00/08 =2 kpypy 0045/ 06 = 0,
(2.18)
where P=n0v/0{+k*w,+m* ow,/0L. (2.19)

3. ELECTROMAGNETIC EQUATIONS FOR A COSSERAT CURVE

To complete the system of equations for a rod by the direct approach, we must now introduce
appropriate electromagnetic variables and equations. In doing this we are guided by the exact
three-dimensional developments described in Appendix B. We assume that the electromagnetic
effects are represented by the following fields:

the electric field vectors: e¥; v = e¥n; @',

the electric displacement vectors: dy;y = dpsn' @y,
the magnetic field vectors: h¥ y = k¥, af, 31
the magnetic induction vectors: by, x = by n'a;, &0

the current density vectors: ji;x = j¥ n' a;,

the free charges represented by the scalar fields: ¢;; , }

for M+ N=K, K=0,1,...,L with M, N integers or zeros. We use an overbar to designate
the electric displacement fields (rather than the more customary symbols without overbar) in
order to avoid confusion with the notation for director fields such as d,, in (2.2).

We need appropriate balance equations for a moving rod, which may be thought of as
analogues of the three-dimensional balance equations associated with Faraday, Ampere and
Gauss. For this we depend on the developments in Appendix B, particularly (B 13)—(B 16).
Then, corresponding to the Gauss integral balance in the three dimensions we have Gauss-type
balances for the rod in the forms

[ &2 M N
J by ds+ [bMN"’]f:2 = J ( 2 x¥bpn'+ X XR bMKz) ds,
¢ 1 ¢ \K=0 K=0

1 1 (32)
& — & M - N
f dyyds+[dynvIE = f (gMN'l' X YR den'+ X YR dMKz) ds.
& & & K=0 K=0
Similarly, corresponding to the Faraday and Ampere integral balances we have
d (& (¢ M N
— | bynds=[e¥yxv]i+ Loy y+alx X yMeky+aix X yNekx)ds
d¢ ¢ & & K=0 K=0
&)
+ | b= Cafaregy aas, (33)
d (& - * ¢ & >k g 1 < M %
-5 g dMNds=[hMN><v]§:+ . Jun—Ldyy+a XKZ Y h%y
1 1 =0
N &3
+a?x X y¥ h}'{,,K) ds +J (hyyny— Ca,[a* iy a®]) ds (3.4)
K=0 ,
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318 A.E.GREEN AND P. M. NAGHDI

for M+ N =K, K=0,1,...,L, where by, dyn> €un> B> due to contributions from the
major surface of the rod, are given by (B 22)—(B 24) in Appendix B. Similar balance equations
may be written in material form in terms of vectors and scalars:
Eyy=EyniA', Hyy=Hyx A, Dyy=Dyy'A;, Byy=Byy' Ai’} (3.5)
Jun =Jun'4;, Eyn,
where these functions are related to those in (3.1) by equations (B 25) in Appendix B. Field
equations derived from (3.2)—(3.4) are

—byn+ Z XY bpnt+ Z X% byx® = div, (byn*a,) = a;; a(bMN a33 )/0&, (3.6)

=0
T N — T . 7 1 T 1
_dMN+eMN+KZ=:0¢'%dKN EE YR dy® = div, (dyn®ay) = a;0(dy N a3,) /08,  (3.7)
byn+byy div,o—Lbyy = —curl,ed; v +a® x Cel y+epy

M N
+alx X yMeky+aix X yNe¥x, (3.8

K=0 K=0

N
+a'x Z UM hty+aix X yNhl., (3.9)

K=0
where curl,( ) =a®x0( )/0¢. (3.10)

Similarly, from balance equations in material form we have
—Byn+ E X¥ Bgn'+ Z XX B ux” = Div, (Byp® H\) (BMN3A:%;3)/6€: (3.11)

— N — — e
"—DEMN+EMN+KZ=O 4 DKN1+K§EO YR Dy’ = Div, (Dyn® 43) = A;éa(DMN3 A%:;)/aga
(3.12)

By = —Curl, Eyyy+ A3 X nCEyyy+Engy + A1 X z XY B+ A7 z; WE, . (3.13)
M N
+A'x X Yy¥Hn+A2x Y YR Hyy, (3.14)
K=0 K=0

where Curl,( ) = A43x09( )/dE. (3.15)

To complete the theory in §§2 and 3, we need explicit expressions for w, f,, I, ¢.. In view
of (B 5), (B 29) and (B 30) of Appendix B, we adopt the following values for & and ¢:

L . .
Aw = Pe+MJ§V=0 (JMN'EMN+EMN'DMN+ﬁMN'BMN)>

Ac, = a;xn,+d, x kZ+ od, =X me, (3.16)

3
P, =n, 0w/0{+ k% w,+m% dw,/0E,
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ELECTROMAGNETIC RODS 319
where EMN = Eyni AY, ﬁMN = Hyn A, ﬁMN = Dyt A@"} ( )
. . ) R L 3.17
Byn=Byun'4:; Jun=Iun'4;
L N L
R+S=0 R+S=0

The coeflicients in (3.18) are given by (B 28).
Under a Galilean transformation of the vector r, directors d, and vectors a;, namely

rt =Qr+ryt, df =Qd,, a} = Qa,, (3.19)

where r, is a constant vector and Q is a constant orthogonal tensor, the following transformations
hold for the electromagnetic quantities:

dynt = Qdyn, bynt = QbyydetQ, ekt = Qelrn,
hyn™ = Qh¥ydetQ,  jin™ = Qitin emnt = euns (3.20)
Dyn" =Dy detQ, Byy" = Byy, Eyn®=Eyn,

Hyyt"=HyydetQ,  Jynyt =JyndetQ, Eyn®™ = Epyy detQ.

When the Cosserat rod is subjected to a constant rigid body velocity and a constant rigid body
rotation, the same relations (3.20) hold with detQ = 1.

4. MAGNETIC POLARIZED THERMOELASTIC COSSERAT CURVE

We introduce the Helmholtz free energy function ¥ for the Cosserat rod by the expression
Y=e—0n—2 O0yntyun—2A""Z (Eyy Dy +Hyy Buyy)s (4.1)
where the vectors £, y, Hy, y are related to the vectors E,;y, Hy,y by (3.17) and (B 27) and
Dyy= a%.g dyny = A%% Dyy, Byy= a%g byn = A%;g By - (4.2)
Then, from (2.18) and (3.16) we have
— A +70+Z ayn Oprn +O05+Z Opry Ergn) —k 00/~ kpgpy 0045 /O, + P+ P,

+2 (jMN'EMN_ﬁMN'EMN_EMN'ﬁMN) =0. (43)

Once constitutive equations have been specified for

Vs aans & Enans s kMN’jMN’ ﬁMN’ EMN> n, k*, m* (4.4)

then (4.3) is an identity to be satisfied for all processes subject to the electromagnetic equations
(3.6)—(3.9) or (3.11)—(3.14).
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320 A.E.GREEN AND P. M. NAGHDI

A magnetic polarized thermoelastic body is defined to be one for which the variables (4.4)
are functions of

6, 65, 00/3¢, 005 /3L, ay, d,, 0d, /L, Eprny Hypns (4.5)

for R+S=1,2,...,Pand M+ N=0,1,...,L, as well as functions of values in the reference
configuration, namely

@, D,, oD,/ A,. (4.6)

In the reference configuration 6,5 are zero, @ is the constant value of 6, and the
electromagnetic variables are absent.

First, we set aside any invariance requirements under superposed rigid body motions, and
satisfy the energy identity (4.3) for all processes subject to equations (3.11)—(3.14). It follows
that ¥ must be independent of @ and 06/08. Then, omitting explicit display of the reference
variables (4.6) and ¢, we have

W = r,(0,0pg, @, dy, 0d, /0L, By s g ) s (4.74a)

17=—%'~ﬁ0—1, nRS=——a%"Z—S, DMN:_AG%ﬁN EMN:“’\aIa?'QN’ (4.7 b—e)
n+ne=/\%":, ka+ka—/\a‘§1, m“+m§=/\5Z£Z/lT§). (4.7 f-h)

Also —XOE+X Opyn Eprn) —k0O/L—3 ks 003y 8 /OE+ 3 Jran Ergn = 0. (4.8)

The expressions (4.7) must satisfy the moment of momentum equation in (2.13). This is
equivalent to requiring that i must be unaltered under a (static) rigid body rotation. It is,
perhaps, simplest to impose this condition on i in (4.7) since only a,, d,, 0d,/0¢ are changed
by a static rigid body rotation and invariance conditions imposed on i as a function of these
variables have been discussed elsewhere (see, for example, Green & Laws 1966; Green et al.
1974; Green & Naghdi 1979). Then, recalling (2.6), and using the notation

hij = di.d]" daz ad /ag, h = di'dja dai = dzada/aga (4 9)
H,=D, D, D, = D,apa/ag, HY = Di-DJ, D= Di-0D,/d, '
Yij = hiyg—Hipy Koy = doy— Dy,
we see that i may be replaced by
¥ =,(0,0gs, Vigs Kais EMN7ﬁ ~N) (4.10)

if we omit the reference variables. Constitutive equations in component forms then follow as
in previous papers, with the additional results here concerning electromagnetic variables. For
our purpose we record the results in a form similar to that used by Green & Laws (1966). If

) o o « ) (4'1 1)
n,=ned;, ki=+kid;, mi=mid,

n=rn'd, k*=kd, m*=m"d, }
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then
\
n +nd —d;3(m*+m23) = 2/\%, n*+ 0% — dgi (mP3 +mb?) = /\%,
Y33 Was
kP + kP k2P + e — 2 (m"P + mPP) — df (m"™ + m*) = 4A aa;f'z
oy Y oy “ (4.12)
at al — 2 —__re2 —_ 2
AT = A Sy 1T 000 RS T a0y
< oY . Y
Dyyi=—a—FX2  p i W2
My OEyyi’ MY OH )

In evaluating (4.12), ¢, is regarded as a function of Vg3, Vugs 3(Yapt Vpa)s Eyyniand Hyype

5. LINEAR THEORY FOR STRAIGHT RODS

We consider here the linear theory of a thermoelastic magnetic polarized Cosserat curve,
which corresponds to the theory of a straight rod of constant cross-section. We suppose that
the rod is unstressed and at uniform temperature f, constant density p* and without
electromagnetic fields in its reference configuration. The linearization procedure and resulting
equations are already available for a thermoelastic Cosserat curve. Extension of this to include
linearization of the electromagnetic aspects of the theory follows similar lines so we omit details
and only record the final results.

We choose the reference line and directors to be given by

R=¢(¢e,, D,=e, D,=e, Di=e, A,;=1, (5.1a¢)

where e; is a constant orthonormal system of vectors. All equations will refer to the reference
configuration represented by (5.1a—c). The motion of the Cosserat rod as given by (2.1), (2.3)
and (2.5) is now specified by

r=R+u, d,=D,+6, v=1u, w,=9,
_ (5.2)
u=ue;, 0,=20d;e,.
Linear kinematic measures of deformation based on (5.2) are

Within the order of approximation of the linear theory, from §2 and equations (5.2) we have
v=1pv=e,; k*=kKk=3k® A=p=npgp (5.4)

For convenience, in the rest of this section we omit the subscript R but understand that all
response functions are defined with respect to the reference configuration. Then, from (2.13),
the equations of motion are

plii+y" dp) = pf +2m /08,
oy di+y*f d,) = pl*— k*+0m=/¢, (5.5)
]

e;xn+e,xk*=0,
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322 A.E.GREEN AND P. M. NAGHDI

where second-order terms due to the electromagnetic fields are omitted and where
n=nmne, k*=k, e, m*=my e, f=fe, U=1,e,. (5.6)

The component forms of (5.5) are then

pliy+y% 85,) = pf,+on, /3, (5.74)
p(yOa di+yaﬁ6—ﬂi> = plai—kai+amai/a€a (57b)
Ny = kyy k= kyy. (5.7¢,d)

We restrict attention to three temperatures and replace 6 by 6+ 6 where 0, 6,, = 0,, and
6,, = 0, are small compared with 0. The field equations of entropy balance are then

p"? = p(.}“-{—g) _ak/a€> p"?a = p(‘ya+§a> _aka/a€3
h=0k, r=0s, hgy="hy =0, ry=ry=0,

(5.8)
T =T M2=Tor 51 =510 S2=5%1 & =8&0 & =&
k= klO’ ky = ko;-
Turning to the electromagnetic fields, in view of linearization we have
Eyy=eyn= Eynie, Hyy=hiy= Hynie,
Byy =byn = Bynie: EMN J = EMNiei’ (5.9)
Jun =Jun =Juni€ Eun=ceun
and from (3.11)—(3.14) we see that the field equations reduce to
M N
—Byn+ E XK BKN1+K2=: XR Bprica = 0By 3/ 98, (5.10)
N —.— Ju—
—Dyn+Eyn+ 2 ';”K kN1t Z_] ¢ MKz = aDMNa/a§> (5.11)
. N pa—
Byine = €y aEMNﬂ/a§+ e, Eyntey, 2 X% Eygngtes 2 X% Eyrks
K=0 K=0
(5.12)
y ’ M N —
Byns=e3 Eyy+ Z= XK Exne— E= XX Enrkrs
DMNa =Jyna— eﬂaaHMNﬂ/a§+e HMN"‘”al 2 E”K Hy s te, 2 ¢K MK3»
(5.13)

‘EMNa = JMN3+93'HEVIN+KZ_0 lﬁ% HKNz—KZ_O ‘F% Hyrxrs

where By n, Dy n> Hays v, E3yn are given in terms of surface values of the electromagnetic fields
by (B 22)-(B 24) and ¢;; = ¢35, = 0, ¢;, = —¢,; = 1.
Finally, from (4.3), the energy equation reduces to

—p{f+n0+7,0,+E0+0)+0,£)—k30/0¢—k,00,/3¢
+Z (jMN'EMN_EMN'EMN“BMN ﬁMN)

+n- 0w/l +k* d,+m*-00,/08 = 0. (5.14)
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Then, for a magnetic polarized thermoelastic rod in the linearized theory we have, either from
(5.14) and (5.7¢,d) or from the results in (4.12),

oy Y oy
n, =2 y My =kyy = , Kk, kg =2 ,
: p 033 » = F Vas / / p a'yaﬁ
oy oy _ 9
Mai =P 1T 7200 T "6,
MNi—'.pé—E“TNi7 MNi_—pms
¥ =Y (V33 Vass %(%ﬁ"“)’ﬁa), Kais 05 0,5 EMNis HMNi)’
—p{(0+0)E+0,E,)—k00/05—k, 00,/ +Z Jyyn Epn = 0.

In the rest of this section we limit our attention to the case where M+ N = 0,1, i.e. the
electromagnetic vectors are limited to Ey,, E o, Eqy, Hygy Hygy Hyp, Dyoy Do, D1y Byg, Bigs By,
Joo» J10» Jo1 with corresponding vectors Ey,, o, E,, B,, A,, #,,, where, from (3.18),

1 1
Eyni= R+2s= I%NRSERSu Hyni = RJ§=0 K%NRSHR&' (M+N=0,1) (5.16)

with coefficients given by (B 28).

Since the rod in its reference configuration is at constant temperature, homogeneous, of
constant density, and without electromagnetic fields, ¥ is a quadratic function of the variables
in (5.15) with constant coefficients. To proceed with the identification of constitutive
coefficients, it is more convenient to express (5.15) in a partly inverted form. For this purpose,
we introduce the Gibbs free energy function G by

PG = pi/r—%n3 Va3 Ny 7a3—%kaﬂ YVap ™ Mas Kags
(5.17)
where G = G(ny,n,, ka/;, My, 0,0, EMNi, HMM-).
Then,
_ 5,0 __,% _ (?_G_+£) ‘
’)/33— pan37 70;3_ pana3 ‘)/aﬂ— 14 akaﬂ akﬂa ’
_6 o _ 6 506G ) G
"==23g> "7 30, MNi = PaEMNi> MNi = paj:]MNi’ (5.18)
K =—p oG
“’ Omy; /

For the linearized theory under discussion, G is a quadratic form given by
pG = —3Agg55 05— 2455,5n5 1, — A33aﬁ ng ko;ﬁ’ - 2Aa3ﬂ3 Ny Ny
—24

1
asap Mo Kru — 5 Aapau Kop kry — Alase iy Meyge — 2A% 35 1y Mop — AR g Kpy Mage

+ 2 (CHE ng+2C27 na+Co%IICV kag) EMN/c"‘Z(Fggl]cV ny+ 2F 355 ”a"‘F%lzcv kap) ﬁMNk
_1)33n30_21)053naﬁ—Paﬂkaﬂﬁ"_Pg3n30a_2P(/{3n/\eoz—P‘/I\/Lk/\/taa

— 1B myymy+ 5 CHN my By i+ 2 FMN my Hyy g
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324 A.E.GREEN AND P. M. NAGHDI
— P2 m,, 60— P m,;0,—iPO>—P=6,0—1P0,6,

+ X GLUNRS By i B+ MYNES By By +ANYNES By gy Hi )

+ X (RMN By 0+ RPN By 0, + SN Hyg oy 0+ 8PN Hyp i 6,) (5.19)
for M+ N =0,1, R+S5 =0, 1. All the coefficients in (5.17) are constants and they possess the
following symmetries:

A33a/;’ = A33ﬂaa Aa3/\;t = Aa3;u\’ Aa3,33 = A,33a3’

Auprp = Aappr = Aparyy = Appopy - A3u = Airges

(5.20)
C%I]CV=C%IJCV’ F%I{:V=F%IICV’ Pa/;’=P/;’a’ Piu=PZ/\a
BZ;,B — ngéx, Paﬂ — Pﬁa, L%JNRS — LﬁSMN, N%lNRS —_ NJI%SMN.
From (5.18) and (5.19) we then obtain the constitutive relations
3Vas = Aggaany+ 24555 m, + A33aﬂ kaﬂ + Agy) Mo
— 3 (CHY Enpne+ FUY Hyng) + Py 0+ P50,
Vas = Aggagng+ 2Aa3ﬂ3 ng+ AaaAp k/\;t + A’g:;k Mgy
-2 (CHY EMNk +FUE ﬁMNk) + P30+ Pl 0/;’,
Wap = Assapng+ 24550510+ Augy ko + Algi Mg
— 2 (Co Epgie+ FUl Hagwy) +Pap0+ Plyb,
PN = P33n3+2Pa3na+Paﬁkaﬁ+P%0mai+P0+Pa00a
-2 (RMN EMNi +SUN HMNi) >
(5.21)

Dy == C3ai¥ ny— 2055 n, — CoN kop— ORI my,
_R;S (LYNES [ oo+ MYNES I, ) — RMN §— RMNe (g
Koy = Bif mg;+ Ay ng+ 245, my+ A5, ki,
— 2 (CHN By i+ FEMN Hy ) + P3O+ P 0,
Py = Plyng+2P%my+ P% ky, + Pl my + P 0+ P/ 0,
_2 (RyNaEMNi-FS'Ia’WNaﬁMNi)’

BMNi=_F:%iNna—ZF%gvna_F%ivkaﬂ-ngNmﬂj

— X (MESMN B NMNES [y GMN §_ gMNag
R, S
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ELECTROMAGNETIC RODS 325

We now further restrict attention to a Cosserat curve which models a straight three-
dimensional rod, with constant cross-sections, and which has the line of centroids along the
{-axis, and geometrical axes of symmetry in each section with respect to directions e,. Values
of constitutive coefficients in (5.21) are then specified with the help of comparisons between
solutions of the equations of the Cosserat curve with corresponding solutions of the three-
dimensional equations. The values will depend on which three-dimensional representation is
chosen in Appendix B for the various thermomechanical and electromagnetic vectors, i.e. which
wei zhting functions are used to select A% uM, @™, yM ¥V M N The appropriate choice
for these functions depends to some extent on the type of boundary conditions imposed on the
major surface of the rod, especially as far as the electromagnetic variables are concerned, and
on the geometric shape of the cross-sections. Here we consider only the choice of functions

A8 =8, p (@) =8, =8 x(E) =1, x{) =&,
YPrg) =1, PrEY =8, (@ =1 X =8 P =1, P =2,
Xo=Y=X=90=0, Xi=vi=x=vi=1, xM=vyi=xn=vyi=0,
M=xi=yi=¥1=0
In view of the geometrical symmetry of the cross-sections it follows from (5.16), (5.22) and
(B 28) that

(5.22)

EOOi = AEOO’L" ElO‘i = 111 ElOi’ Eol’b' = 122 EOli’ } (5.23)

Hyy = Aﬁooz" Hyyy =1, Hloi’ Hyyy= Iy ﬁow

where 4= JJdA, I, = fjglgl d4, I,,= f‘[?? d4. (5.24)

With the help of Appendix C, constitutive coefficients are chosen to have the values:

A‘;‘jk =0, Pg‘j =0, P¥=0, P*=0,
Ajrs = A7 5405
except for
Aaaﬂa = ﬂ(aﬂ) A—lsaaﬂa’ Aygre = ﬂ(a) A 50510 Aoz = BA 10105
Py =sy, P=Ac*, Pl=1], c* P2=1[,c* P2=0,
P =Pf=2s, P =PP=sy, PR=0, PP=0, 525
By = By, = 25,553/ 113, BZ = B3 = 25a333/122a
B3i = 53303/ L1y B33 = Sgass/lp, Byy = B3 =2/9,
Bl = Byl = 451305/ 111, B2 = B3} = 459343/ Ly,
Bl =B =0, BiE—B%—0, Bii—B-0,
B =Bi=0, BE=B=0, Bi=Bi=0, BY-BE=0,
and
O = Ky CH=0, CHo= 21 = 2%,
C;%O = ngl = k:;k:;i’ Cilypk =0, ngllc =0, Cl!})l =0, ngjlo =0, (5.250)

00 _ 7% 00 _ 110 — 201 — of%
F’&'jk‘ - l’ijk’ Ff] - O’ Fai - Fai - 2la3i’
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326 A.E.GREEN AND P. M.NAGHDI

F3i® = F' =Gy Fiji
LY = Aff, L =1Ly [ LY = Lu 5 (5.25b, cont.)

0010 — 0001 — 1000 — 1001 — 0100 — 0110 —

—0, F%,=0, F¥' =0, F3o=0,

and
MR = AR, MM =1,k MY =1, h,
MP =0, MPr=0, MP* =0, MP* =0, MU =0, M} =0,
N = Ag, N =Logh N§O = hugl,
NYW® =0, NYP*=0, NP®=0, NP"=0, N0 =0, NH=0,
R = Af¥, R}°=0, R}'=0, R}**=0,
RO =1, f¥, R =1I,f} Ri==0, RM=0,
S99 = Ag¥, SP =0, §N=0, §P*=0,
SIt = Lygl, SP* = hogf, SIm=0, SP1=0, )

(5.25¢)

In (5.25) 9 is the torsional rigidity of the rod and f,4, B, are coefficients to be specified.

When discussing constitutive equations for the response functions %, £,, £, §, and J,; 5, by
the direct method we need restrictions which may arise from further thermodynamical
considerations. The constitutive coeficients in these equations are then expressed in terms of
the three-dimensional coefficients in (C 1) with the help of results in Appendix B. Here,
however, we make direct use of (C 2) and Appendix B, together with (5.22), and list the final
results:

k = — Aky, 00 /08 — Aky, 0, — ay; AEooi’ \
kl == 111(k33 601/a§+ 2% Eloi) s kz = 122 (kzz 602/a§+ 2% E(ni) ’
£=0,

~ . (5.26)
pEy = — Aky300 /08— Ak, ;05— Aa,; Eoyiy  pEy = — Aky300/00 — Akyp 0y — Ady; Eys

J?O = Ali?» 60/a€+ Alia 005 + Abij Eooj:
Ji® = Iy (1;500,/08 + by Eloj), S = Iyy(15,00,/08+ by E~°U) ’

6. A RESTRICTED THEORY OF RODS

For many purposes it is sufficient to develop a theory of rods which has a simpler structure
than that of §2. This theory may be regarded as a constrained version of the theory given in
§2 or may be obtained as a direct theory ab initto by separate postulates. We adopt the latter
course and refer to Green & Laws (1973) for a derivation as a constrained theory, although
an extra constraint is needed in that derivation to obtain the present restricted theory.

With some of the notation of §2, the motion of the rod is now specified by

r= r(ga t)) a3 = a3(§) t) = ar/agy v = i'(ga t) (61)
and a rotation tensor
P=a, QA*+vQ@yv, a,=PA, v=Pgy (6.2)
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with PPT =] P=WP, W+WT=0,
6.3
W=a,®a*+v@v. (6.3)

Let @ be the axial vector corresponding to the skew tensor W, so that
Wu=oxu (6.4)

for all vectors u. Let f be the axial vector corresponding to the skew tensor PTOP/0¢. Then

oP ; ow
Py, = —pr?? .
o™ Bxu, B o (6.5)
for all vectors wu.
Equations of mass conservation, momentum and moment of momentum are
d (& 1
ey pds =0, ds=a3,d¢, (6.6)
&
d (& €3
G| = ["ptres as+ (6.7)

d [é Ge
5 . pirxv+Yw)ds = . {rx(f+fe)+l+le+ce}pds+[rxn+m]§i, (6.8)

where fis the assigned force, I is the assigned couple, f,, I, are force and couple vectors due
to the moments of the electromagnetic forces and ¢, is the electromagnetic couple. The inertia
tensor Y is a function of ¢, independent of ¢. Field equations corresponding to (6.6)—(6.8) are

pt+pdivey =0 or pdy, = gpdi, = A,
AD = A(f+f,) +0on/d¢, (6.9)
AYod = A(l+1,)+Ac,+a; xn+0m /8.

The equations of entropy balance still take the forms (2.15) but the energy equation is now

& & K
dit . (e+iv-v+iYo o) pds =J {T+M+213V 1 rMN+(f+fe)'v+(l+le)~w+iu“}pds
P &
+[n'v+m'a)—k— > hMN] . (6.10)
M+N=1 ¢
The corresponding field equation is
A(r+2 1y ) —A—0h/0E— 3 Bhpy 5 /Ol + AW —Ac, 0+ P = 0, (6.11)
where P=n-a,i+P"m-B, ¢=11n(ay/A4,),
L . .
Aw—Ace @ = Pe+M+21:V=0 (JMN'EMN+EMN'DMN+HMN'BMN)s (6.12)

P, =n.ayi+P'm, .
With the help of (2.17) and (4.1) we have an energy identity of the form (4.3) but with P,
P, now given by (6.12).

22 Vol. 314. A
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328 A.E.GREEN AND P. M.NAGHDI

Discussion of a magnetic polarized thermoelastic rod now follows as in §4 except that the
kinematic variables in (4.5) are replaced by

a,, P,0P/0¢, A,, (6.13)
or, taking into account the invariance of ¥ under a constant rigid body rotation,

¥ =1v,(0, aMN’CsﬂsAssEMN>HMN)' (6.14)

Expressions for the entropy densities and the electromagnetic vectors are the same form as those
n (4.7), but (4.7 f~k) are replaced by
W 4
(n+ne)'a3=/\a—c3, m+me=/\P—aF3. (6.15)
To have component forms of constitutive equations corresponding to (4.11), we use the
notation of (2.6) and note, from (6.2), that

oP
P o7 = Kpu A @ At 1y @ A°— A" @ py),

(6.16)
Kp, = Cop—mnlp = —K Ko = Cop @k — 0oy AT
fo T Pafp RPap T fo> B3 3% 3 R"3“'33>

where the notations k4, k3, are different from the quantities defined in (4.8). Then, with (6.5),
(6.15) and

B=p, A+ qv, n=n,a*+nv, n,=nga*+ngv,
(6.17)
m=m,a*+myv, m,=mgya*+myVv
we have Br=Kegy Po=—Kyg P3=K=—Ky,
oY o oY
Ngtngg =A—2, my+my, =A22 mgtme, =A2, 6.18)
3 e3 ac (sl aﬂ“ 3 e3 aﬂg (

'ﬁ = '/’4(@ ﬂp ﬂza ﬂs: g, 0MN: ERSi= ﬁRSi)'

The force components #,, n, are not determined by constitutive equations.

In line with §5 we limit further discussion of the restricted theory to that of the linear theory
of a rod which in its reference configuration is straight, with constant cross-sections. The
reference line and its motion are specified by

R=_{e,, r=R+u, u=ue, (6.19)
The linear rotation of each cross-section about e, is §,, = —&,, and
¢ =3Ya3 = Quy /0L, Kyp = —Kyy = 00,/3,

Kyy = —0%u,/08%, w, = —0%,/0t0{, w, = 0%,/0td¢, (6.20)

(l)3 = a(?_lz/at, Q) = (1)," ei.
With quantities now referred to the reference body we have

n=ne, m=me,;, [=]Ffe,;etc. (6.21)
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ELECTROMAGNETIC RODS 329
and the linearized equations of motion are
pii; = pf;+0n; /0L,
Py, — py*Po, = ply—ny+0m; /0,
Py, — pyto, = ply+n, +0m, /0L,
Py +4%%) oy = ply+my /0L

where p is now reference density and y*# are the same as the inertia coefficients in (5.5).

(6.22)

Since the rod in its reference configuration is at constant temperature, homogeneous, of
constant density, and without electromagnetic fields, ¢ is a quadratic function of the variables
in (6.18), with constant coefficients. As in §5, to help with the specification of constitutive
coeflicients it is more convenient to express results in a partly inverted form. If

pG = pYr—cng— By m;, } (6.23)
G = G(ny, m;,0,0,, EMNi’ HMN:’):
then, with M+ N =0, 1,
oG oG oG
6—%’)’33——/’&;, ﬂz——P%, T="30 .
(6.24)

_ %6 5o % G
No = 36, MNi = PaEMNi> MNi = PaHMNi

and G is a quadratic form. We limit attention to a restricted Cosserat rod which models a

straight three-dimensional rod, with constant cross-sections, with the line of centroids along
the {-axis, and with geometrical axes of symmetry in each section with respect to directions
e,. Also, in evaluating the coefficients in G we will again use the representation involving the
functions (5.22), with the relations (5.23). Thus,

pG = —3An2+ 3 (CHN ny Epy iy + FMN ny Hyyy) — Py 0
—1Bym;m+ 5 (CHN my Epy g+ FXN my Hyyy)
—Pim,6,—PO*—1P*0,0,
+3 QLYNES Eyyni Epsj+ MYNES Eyy i Hpg; +ANMNES B 0 Hy o))
+ 3 (RMN Epyni O+ RN By 0,+SMN Hyy 0+ SMN2H0i6,). (6.25)
The corresponding constitutive equations are
¢ =ygy = Anyg— 3 (CYN Epyni +FYN Hypnh) + PO,
Bi=Byym;— % (CYN Epyy+ FYN Hyy i) + P36, (6.26)

pn = Pn,+PO—3 (RéuNEMNi“‘SéwNﬁMNi),

22-2
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P, = P‘%‘mi-f'ij“ﬂeﬂ-z (RéuNaEMNi‘FSMNaHMNi)’

D—MNi = —CMN ng— CYN my— RES (L%NRS ERSj + M%/'INRS FIRSJ') —RMNO—RYN=0,,
Byni = —FYN ng—FyiV mk—RZ (MﬁSMN ERSj + N%NRS HRSj) —~SYNO—SMN=g,.
(6.26, cont.)

The constitutive coefficients are chosen to have the following values:
A= A5y, P=sy, P=Ac*, )
Pl = 111 c*, P22 — 122 c*, pre — 0,
Byy = Sy333/loes Bia =0, Byy = —51355/ 15,
Byy = S3333/111s Bay = —Sas33/ L1y Byy = 1/9,
Pi=0, Pj=—sy, P}=rsy,
Pt =33, Pi=0, Pj=—sp,,
CP=kfy C°=0, CPP=0,
Ci =0, Cf=0, Cy=—ky Cif=4kY
C(l)jl = k;;;, ngl =0, Cg} = —k;l;j,

FP =l FP=0, F=o,

(6.27)

00 — 10 — 10 — __ % 10 — 7%
Fij - 0’ Flj - 09 F27‘ - l33j> st - 123j>
01 . 7% 01 01 — __ /%

Flj - lsaj» sz =0, st - 1139',

the remaining coefficients having the same values as in (5.25).

7. NON-CONDUGTING RODS

As one example of the theory of rods developed in previous sections, we consider a
non-conducting rod in free space under isothermal conditions and in the absence of body force
and applied tractions over the major surface of the rod. We use the restricted linear theory
of §6, which models a straight rod with constant cross-sections, with line of centroids along
the {-axis and geometrical axes of symmetry in each section with respect to two orthogonal
directions e, defined earlier in § 5. The effect of thermal variables is suppressed and the choice

of electromagnetic variables is limited to Eq;, E1oi5 Eoris Hooss Hioss Horss Where

Eoy = AEyy; Eygi =Ly Ergiy Eoi = Ly Eous } )
Hyyy = AHy;y Hypo =11 Hyoyy Hoyy = g Hoyy
The linearized equations of motion (6.22) reduce to
pii; = 0n; /08, — py?®?03u,/0t2 0L = —n,+0m, /0,
Py’ 03u, /0208 = n +0my /08, p(y™ +y®2) 0%0,,/0 = am3/a§} (7.2)
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and the quantities p, y'!, ¥* are

p=Ap*, py't=1,p* py** = Lyp*. (7.3)

The constitutive equations are given by (6.26) and (6.27) with the effect of thermal variables
omitted. In addition, the relevant electromagnetic field equations are (5.10)—(5.13) with M, N
taking the values M, N =0,0; 1,0; 0, 1.

When discussing deformation or vibration of the rod it is necessary to consider electromagnetic
wave propagation in the free space surrounding the rod, and to use appropriate continuity
conditions for the electromagnetic vectors at the surface of the rod. We do not embark on such
a discussion here but limit our attention to a simpler situation in which the electromagnetic
moduli for the rod are much greater than the moduli for free space so that we may adopt the
approximate surface conditions

nB'+n,B2=0, n,D'+n,D?=0, (7.4)

where n,, n, are the components of the outward unit normal to the surface. From (7.4) and
(B 24) it follows that
Byn=0, Dyn=0. (7.5)

Let s be the arc length in the surface of the rod, normal to the axis, and E, H, the tangential
components along s of the electric and magnetic vectors. Then

E =nE,—nE, H =n H,—n,H, (7.6)
and the surface conditions (7.4) imply that

0E, OE, 0H, O0H,
& 0 & (7.7)

With the help of (B 22) and (B 23), it follows from (7.7) that
O _

O g5 _ 014

K 0, X E o, X Eo25 -
OH! OH . H ) '
8203 =0, 62’03 = Hgy, agla = Hgo:

To make further progress, it is necessary to specify the shape of the cross-section of the rod.
We consider a rod with elliptical cross-sections with semi-major and -minor axes (a, b). Also,
in view of (B 17) and (B 18), we use the representations

B! = Byoy/ A+ 8B,/ Iy + Byyi/ Ly,
D' = Do/ A+ED,gi/ Iy + EDyyi/ Is, (7.9)
A =mnab, I, =31Aa%, I,, =14b%
Then, applying the surface conditions (7.4) to the ellipse ()2/a®+ (£?)%/6% = 1 gives
Byyy =0, Byy=0, By, =0, By,=0, By,+B,,=0, (7.10a—¢)
Dgpy =0, Dypy =0, Dyyy =0, Dy, =0, Dy,+Dy,=0. (7.10 f~)
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Also, since on the surface of the ellipse, {*d{'/a2+£2d{?/b? = 0, it follows from (B 22) and
(B 23) that

Elg/a®+Eg,/0* =0, Hjy/a*+Hy,/b%=0. (7.11)

With the help of equations (7.8), (7.10), (7.11) and (5.10)—(5.13) for the specified values

of M, N it is seen that the components of By, y;, Dy — in addition to those in (7.10) — are
all functions of ¢ and independent of {, i.e.

B003(t)’ BIO3(t)’ B013(t)’ 5003(0’ 5103(t)’ 5013(t)' (7'12a_f)
Moreover, the only non-redundant electromagnetic equations (5.10)~(5.13) are
oF oH

6202 +Ej, =0, a%” +Hy, = (7.134,b)

OF, , OF
azm’LEO“ alg — I+ Eg, = 0, (7.13¢)

0H, oH
a2‘2+H;,11 a%"1+H102 (7.13d)

oE
By, =— aZOI+E102 008> (7.13¢)
= 0H
— Do = — a%m"'Hmz Hgys, (7.13 1)
Bom = Eg3— Egor, 5013 = Hy3—Hyyy, (7.13g, h)
Bma = Efo3+ Egos, Dyos = Hygs+ Hygo, (7.134,)
0 (Eyp Eou) - g (Hmz Hou) _

ag;( )= 0, FTa ) = 0. (7.134,1)

The relevant constitutive equations are given by (6.26), (6.27) and part of (5.25), with thermal
variables omitted.

The problem has now been reduced to equations (7.2), (7.10), (7.12) and (7.13%,[) for the
variables ;, 8,5, Eggi» E1oi> Eorss Hoois Hios» Hors and then equations (7.8), (7.11), (7.13a) for
ani’ Eioi’ E:)li’ H:)oi’ Hioi’ Htl)li'

As an example, suppose that the rod is maintained in equilibrium by constant couples applied
over the ends of the rod. Then, with

ug =0, n,=0, m=0G, (7.14)

where (; are constants, equations (7.2) are satisfied. All the quantities in (7.12) are zero and
from (7.10a, b, f, g), (7.12a,d) and the constitutive equations (6.26) and (6.27), we obtain

Ey; =0, Hy =0, ¢=0. (7.15)
Again, from (7.10), (7.12) and the constitutive equations we have
LWWOE + MWW H (4 Clm,+ Cimy =0, (7.164)
LYt Eoy i+ MUY Ay + CO%my +C Yt my =0, (7.16b)
MIWOE +NYOH +FY¥my+Fmg =0, (7.16¢)
MOVE .+ N° §H01j+Fu. m,+F3imy =0, (7.164)
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fori=1,31in (7.164a,¢) and ¢ = 2,3 in (7.164,4) and
LYOE i+ LY B+ MWW H, o+ MU Ay i+ Clmy+ Cmy + (CR+C) my = 0,} 7.1
Mpre E~‘mj + Mo Eq;+ Ny ﬁmj + N9 ﬁmj + Fm,+ Fm, + (FR+FMmy =0.] *
Also, from (7.13%,/) we obtain
b2E,,, = a?Ey,,, b H,,, = a®Hy,,. (7.18)

The twelve equations (7.16), (7.17) and (7.18) may be used to express E,;, Eqriy Hios Hons
in terms of m,, m,, my. Then, from (6.26) the expressions for curvatures and torsion of the rod
are given by

By = Byymy+Bigmy—CY% Egyy—F3} Hyyy,

By = Byymy+ Byymy—C32 Eloi —Fy Hloia
By = Bigm+ Byymy+ Byymy —C32 Eun' —C% Eou —Fy Hloi —Fy Hon‘a
By = —%u,/08?, B, = 0%, /08 fs= aa—lz/ag

As a second example, consider wave propagation along the rod. If we assume that all

(7.19)

variables are proportional to expi(mz+ w¢) and remove the exponential factor, then equations
(7.2) yield
—pwiuy = imny, pw?(1+ytm?) u, = —m>m,,
3 3 1 i 2 . (7.20)
PP (L+y®m?) uy = mPmy, pw*(y' +y**) m?0,, = —imm.

The functions in (7.12) are again zero so that equations (7.16), (7.17) and (7.18) are satisfied,
and from (6.26) we have

L%poo Eooj + M%poo ﬁooj +C¥ny =0,

MY Fpo i+ NWO Hyo 4+ F¥n, = 0, (7.21)

¢ = imuy = Any—CP Ey; — F Hyy,.

In addition, equations (7.19) hold with

By =mPuy,  fy=—mPu,, fy=imd,,.

The frequencies of propagation may be found in the usual way, yielding one extensional
frequency and three frequencies involving flexure and torsion. The surface values of the
electromagnetic field may then be found from equations (7.8), (7.11) and (7.13).

The problem of a non-conducting rod in free space may also be discussed with the aid of
the theory of §5. The electromagnetic part of the theory is the same as that used in this §7
and reduces to equations (7.8), (7.10), (7.11), (7.12) and (7.13). Mechanical equations of
motion and the constitutive equations are then obtained from §5.

8. PIEZOELECTRIC CRYSTAL RODS

Isothermal forced vibrations of piezoelectric crystal rods may be studied as a special case
of the theory of §§ 5 or 6. We again limit our attention to the theory of § 6 which models a straight
rod, with constant cross-sections, with line of centroids along the {-axis, and with geometrical


http://rsta.royalsocietypublishing.org/

'

A A

JA \

/%

A
‘/\

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

 \

A
yah N

J

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org
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axes of symmetry in each section with respect to orthogonal directions e,. The linear equations
of motion (6.22) again reduce to (7.2) except that externally applied tractions may also be
included if desired. In piezoelectric theory, the magnetic fields H,; y; or H,, x; are absent from
all constitutive equations so that, from (6.26), B,,; = 0. With thermal variables omitted and
the electromagnetic fields limited to

Eooi = AEoois Eloi =1, Eloia Eou‘ =1 Eow (8.1)

the constitutive equations (6.26) and (6.27) reduce to

— An — (00 F
¢ = Any,—CY E;,

fy = Byym+Bymy—CY; Eow
By = Byymy+ Byymy—C3) Eloi’

B3 = Bymy+ Byymy+ Byymy—C3l Emi_cg% E~01i’ (8.2)
500@' =—Cny— L%poo Eooj’
ﬁloi =—Cymy,—CRmy ——L%](.)lo ElO]”
D_om‘ =—Chm—CY ma—ngml Eon"

From (5.10)—(5.13) and (5.22) we see that the appropriate electromagnetic field equations are

, 0D, P oD, P oD,
— Dy, =_a%?:, — Do+ Doy = aél»%a — D, + Dy, =—6%’ (8.3ac)
oF, , OF, , . ,

a"§02+E001 =0, — a(g)l-{-Eooz =0, Ej;=0, (8.3d-f)
aE , aE ’ ’ ,
%—FEIOI =0, —élzol‘FEloz_Eooa =0, EljputEy=0, (8.3¢g—1)

aE ’ aE ’ ’ ;
6212+E011+E003 =0, — 6211+E012 =0, Ej;—Ey =0. (8.35-0)
Let ¢ be the applied potential at the major surface of the rod. Then, from (8.34-/) we have
Eyoy = =Dy, Eye =Py Eigy=Pyys } (8.4)

Eipn=Egpp— D, — Py, Eoyy=— D,y Eggz = —0(Egp— b,,)/3¢,

where
b= o, o= fpaz
0, = doviar, = $prac, (8.5)

0y = doran, = $prac

In view of (8.4) we are left with three dependent variables E,,, Eqy3, Ey - To complete the
differential equations (8.3a—c) for these variables we make use of the representation

‘D_i = D_Ooi/A+€1D—10i/Ill+§2D_01’i/122 (8'6)
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so that, with the help of (B 24), we have

D(/)o = A(5101/111+D_012/122>’ Dy, = D_oop D(/)l = 5002~ (8.7)
Then, with (8.7), the differential equations (8.3a—¢) reduce to

D, D, Dy,

oD D — — __ _
6203 =—4 ( 1101+ Vi )’ Doy = D\p3(8); Dygyz = Diys(?). (8.8)
11 22

9. ALTERNATIVE THEORY FOR RODS WITH RECTANGULAR CROSS-SECTION

So far we have interpreted both the general theory of §3 and the restricted theory of §6 with
the help of polynomial representations and formulae in Appendix B. For some types of
electromagnetic surface conditions and for some cross-sections of the rod, it is more convenient
to interpret the one-dimensional theory with the help of functions other than polynomials in
&', & as far as the electromagnetic part of the theory is concerned. To elaborate, we consider
a uniform rod of constant rectangular section whose sides are of lengths a, b, the surfaces of
the rod being defined by

1=+l —<E<Y and =+, <<l 0.1)
Then, in Appendix B, we choose
YM(§) = (2/a)} siniMm(1+28/a), \
YM(E) = (2/a)} cosIMm(1+28/a) (M #0), x°(&) =a
PN (&) = (2/b)} sin INm(1+282/b),

FY (@) = (/b cosINR(14+26/6) (N #0), B(E) = b, 9:2)
M — Mnja, YN =DNn/b, y¥ =0, y¥=0 (M=+#K,N+#K),
XM =—Mnja, ¥N=—Nn/b, ¥ =0, ¥¥=0 (M+#K,N+#K).)
In view of (B 26), (B 27) and (B 28), it follows from (9.2) that
Eyni = E~MNi’ Hyni = ﬁMNi’ (9.34a,0)
Fryoy =0, Eyos=0, Hyp=0 (M=0,1,...), (9.3¢c-¢)
FEone =0, Epng=0, Hpy, =0 (N=0,1,...). (9.3 f-h)

With representations (9.2), some changes are necessary in the values of the constitutive
coefficients in (5.25), (5.26) and (6.27). Here we record only the changes in values of the
constitutive coefficients for the restricted theory in (6.27). The coefficients 4, By, P, P, P,
P? are unaltered, while the remaining coefficients now have the values

2

W= e (= ()M (N #£0), CMY =0 (M#0), CP=0,
2%

Mo _ (_{\M 1% MN _ 00 —

2 a%b%Mn{l (—O)MYER, (M #0), C3 0 (N#£0), C¥=0, (9.44)
2

MN= ____ o M o N %®

O = s = (C UM = (=D kS (M %0, N #0),

cMo =0, CIN =0, )
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2%
A Mn
2t
= ARNT

FMO = {1—(—1)M}y1x, (M#0), FMN=0 (N#0), F®=0,

FoN {I=(=1)M 5 (N#0), FYN=0 (M#0), FY=0,, (9.4))

l*
F = :i:;i, FglN:O (M #0, N #0),
abd

2% NT

2atht
M?Nm?

CIN =0, CMo=0,

*
N k331

122

CiY =— {1+(=1) (N#£0), CHN=0 (M#0), CY=0,

*
N k331

CMN
Ill

{1—(—)MH{1—(-1) (M #0, N +#0),

(9.4¢)
_ 2ah}
MN?3r3

cMo—0, C=

vy

22

CMN _

(= (= )M {1—(—1 (M #0, N #0),

b
21
abd

CMO

(1 (1

(M#0), CEN=0 (N#0), C3=0,

CMN — _

(M#0,N#0), CM=0, C¥ =0,

 \

A
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M Nm?

aibh

MN —
Cs MNm?

{1+(—
2a5ht
M?Nr?

1

21

CMN _ _

{1—(—1

cyy = {LH—UW

2a3b3
MN?r3

CMO ;ibl
~ T olMn

CMN

{1-

CMN _ aibt

MNm?

1

MN2

k*
(L= (= ME{L+ (1)} 2

DMyl — (-1

(—D)MH{1—(—

T+ (=M= Ky

22

vy M

11

oy h

11

M1 —(—1

131

(N #0),

00 — Mo
C3l - O> C31
22

E 3
k132

I

22

)N}

(M #0),

00 —
C32 -
ll

Ill
1y A
22

{1+ (=D)MH{1— (=)™}

3
2

{1=(=)M{1+(—

CMo =0, C =0,

2abh?
MN?2m?

F?{V:‘O’ F11

FMN _ _

vy B

22

{I=(=D)MH{1—(—1

Mo —
3

(M#0,N+#0), CMO=0, CI¥N =0,

(M # 0, N # 0),

(M #0,N+#0),

0, Cg

(M #0,N#0),

(M #0,N#0),
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FM0=_a%~b%__{1+(_1)M}& (M#£0), FIN=0 (N#0 \
21 2‘2‘MTC [11 s 21 T )’
1,3
FON = — il {1+(—1)N}1ikag (N#0), FYN=0 (M#0), F%=0
12 2iNm L, > © OBV (9.4, cont.)
R = 2 —om— oM B s v po)
22 M?Nn? I, ’ ’
F)V =0, FMo=y,
Aaibt *
P = —Fa = (DM 2 (V#0), FiY=0 (M#0), Fii=o,
2abbi ¥
F%(’:W{l—(—l)M}% (M#0), FEN=0 (N#0), F3=0,
asht ¥
Ff,.‘f°=—2%11/11[{1+(—1)M}~1313Tl (M#0), FV=0, FY=0, (9.49)
2ath} ¥
Y = g - (S DM (0N (20, N 20),
2a8bt ¥
FMN _ _ — (1 YMYg —(— 1\ lese
Y =~ g 1= (SO ()M T2 (4 # 0,8 £ 0), }
abt I* \
Fgév=—~2%Nn{1+<—1>N}ﬁ (N#0), Fy°=0,
2iabht Iho
P = = as 1= (Z0M 2 (1 %0),
24abbt ¥
F3§V=W{1—(—1)N}f (N #0), (9.4h)
FUN=0 (M#0,N#0), F¥=0,
RYN k= AfF CMN, RYN RSy = —1, CHN f¥,
RYN2 kY = L, CYN £, SYN Iy = AgF FPV,
SYN ISy = — L, FY{N gf, SYN2 3y = Ly FI{N g, )
where in the last six formulae there is no summation over the repeated suffix 7, and
L%NRS=3MR8NSfﬁ (N#O,S#O), L{V{ORS=O, L%NR0=0’ \
4RN{1—(—1)M+R}{1—(—1)N+S}f*
MNRS _
et = AT (Vi siar " (R#M,S# N, M,N,RS#0),
2AR{1 — (— 1) R (1 — (— 1)) 13 (942
MNRo _
L12 0 - (Rz_Mz) an 12 (R¢ M) M)R,N¢ 0),
2V — (= 1)1 — (= )N} 1
NRS _
LINES = RV =59 2 (S#N,R/N,S+#0),
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LONRo — 2{1“(“1)R}{1"("1)N}ff2
12 RNm?

LIRS = 0, [MNoS = [MNRS =0 (M, N,S+#0),

(R, N # 0),

LEYEN =0 (M, N,R#0), LENM° =0 (M,N#0), LRN =0 (R,N#0),

pynrs _ ZRU—= (= 1)MR)oNS 7t
1 (RR—M? 1

21— (= )R} NS [
Rn

LYORS =0, LYNOS =0, LYUNRO—0; [MNMS =0 (M,N,S#0),
LYNRS = gMRGNS (% (M # 0, R #0), LIVES =0, [MNoS =,
28(1 — (— 1) N+5) RM [

(R# M,R,M,N,S #0),

LYNES = (R,N,S #0),

L%NRS: (S2__N2)Tc (N#S, M’R’N)S¢O))
2.% 1__ __1 S 8RM *
Laors _ 2H1=( DuLalt YN X PT)

LYUNEN =0 (M,R,N#0), LIRS =0, LMNOS—( [MNR_

L%NRS = oRM 3SNf;(3 (M> Ra NaS # O)a LgéVRS = Oa L%ORS =0, L%NOS = Oa
L%NRO — 0’

(9.41, cont.)

N%NRS = §MR 3ng;kl (M,R + 0), N‘I){VRS — 0, N%NOS — 0’
AMS{(1 — (= D)ME{1 — (= 1)V g

NMNRS — AT (M#R,N#S, M,RN,S # 0),
Nagors - ZMUZ (—(;4)2‘4:;}2&;2(— DB (v R, MR, S £0),

Naoos _ 2{1—(—1)“/‘\;;{9;2—(—1)5}5"2 M5 %0,

Nygvos = 25U “("A;)(I;jf];%;:)lvw}gﬁ (N#S, M,N,S #0),

NMNMS =0 (M,N,S+#0), NMYNEN =0 (M,R,N#0),
NMOMS = (M,S#0), NY¥NN—=0 (M,N+#0),
N(l)éVRS — O, N%NRO =0,

2M{1 — (— 1)M*R} oS gy

NMNRS — R n (M#R, M,R#0),
11 _ (— 1\M) gNS g%
vimos 2 (/\14)1;}8 £ (M #0),

NENMS =0 (M #0), NYRS =0,
NYNRS = gRM §SN g% (N, S # 0),
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N%ORS = 0, N%NRO =0, \
2N{1— —1 N+S}3MR %
NpNRS = ((Nzlsz)n = (N#S,N,§#0),
" .
{1 —(—1)N}oME g* 9.4, cont.
NMNERo _ ( N)n 823 (N #0), (945 )
N%ORS — 0,
NMNRS — gMR §NS g%

4RN{1 — (—1)MTEY {1 — (—1)N+S) p
(Rz—-MZ) (NZ—S2) 2

2IR{1 — (— MR — (— 1)V} ¥

MNRS _
MY =

(M#R, N#S, M,R,N,S #0),

MMNRo — (R 3% Na? (M#R, M,R, N #0),
2§21N1_ __1R 1— _1N+S /Z*
2{1 — (—1)B {1 — (— 1)V} h¥

M?{VRO: { ( )l}éjvnz( ) } 11 (N,R#O),

MYNMS =0 (M,N,S#0), MMNEN—=( (MR, N+#0),
MMNMO — 0 (M,N#0), MINEN =0 (N,R+#0),
MMOBRS =, MMNOS — (),
M%NRS — §MR §NS k¥, (N,S #0),
MMORS — 0 MMNRo — ()

2N{1— (—1)N+S} $MR p¥*

MMNES — CE=r (N#S, N,S #0), (9.4k)
H1—(—1)N} SME p¥
MMNRo — {1 N)n } 13 (N #0),

MYNEN =0 (N #0), MMORS =,
MMNRS — §MR §NS kY (M,R # 1),
Mg{VRS — O, M%NOS — 0,

AMS{1— (— 1)MFRY] — (—1)N+S} ¥
(M?=R? (S2— N?¥) 2

28501 — (— )M} {1 — (— 1) N+S} %

MMNRS — (M#R,N#S, M,R,N,S #0),

MMNOS — M=V 2 (N#S, M,N,S #0),
PUM{1 — (— )M*RY (1 — (— 1)) A

M%OR‘S': (Mz—R2)S752 2 (M?éR) M,R,S#O),
21— (=)M{1—(=1)S} A}

MMoos _ AL = (M, £ 0),
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340 A.E.GREEN AND P. M. NAGHDI
MMNMS — 0 (M, N,S#0), MMNEN =0 (M,R N+#0),
MMNON — 0 (M, N#0), MMMS=0 (M,S#0),
MRS =0, MHENE =0,

2M{1 — (— 1)M+R} §NS k.

M%NRS= (M?_R2)1t (M#R, M,R#O)’
L1 _ (_ 1\My NS p*
M%NOS — 21{1 ( /‘14)“ }3 h23 (M?‘-' 0)’

MYNMS =0 (M #0), MYFS =,

2N{1 — (—1)N+S} gME px
(N2 =S¥t

2H1 — (= 1)V} oMR p
Nn

MMNEN =0 (M,R,N #0), MMOES =0 MINES =0, MMNS o,

2M{1— (—1)M+R} NS px
(M*~R) =

2{1 — (= 1)M} NS h
Mmn

MMNMS =0 (M, N,S#0), MRS =0, MMORS_( MMNR
AMN{1— (= 1)M+R} (1 — (—1)N+S) gt

MMNES — (N#S,R,M,N,S #0),

MNRO —
M3 =

(M,R, N #0),

MMNRS — (M#R, M,R,N,S #0),

MNOS _—
MY =

(M, N, S #0),

MMNRS _ AR =S (M#R,N#S, MR, N,S#0),
pggrre - BMUZC P =0 142, MR N 20)

MMNos _ 28N{1 — (—;‘;()xigsz)(;l)”*s} My (NS M, NS £ 0),

MUNoo — 2{1*(—1)?}[2“‘2'(—1)1\'}/’?3 (M, N #0),

MYNMS =0 (M, N,S$#0), MYNEN =0 (M,R,N#0),
M%NM():O (M’N;é O)’ M%N0N=O (M,N?‘-‘ 0),

ONRS _ MORS
MONRS =, MMORS = ),

(9.4%, cont.)
In view of (9.2), it follows from (B 23) and (B 24) that
and the electromagnetic equations (5.10)—(5.13) reduce to
— By n— (Mn/a) By yy— (NT/b) By vy = 0By v,/ 08, } (9.6)
Epn+ (Mn/a) Dy, + (N1 /b) Dpgvy = 0D g 55/,
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ELECTROMAGNETIC RODS 341

By = 0E o/ 08+ E gy — (NR/b) Epgps,
Byrne = —0Ey ni /0 + Ely o+ (MR /a) Epy s, (9.7)
Byns = Edyns— (Mn/a) Eyyyy+ (NR/b) Epy s,
— Dy = Jagws +0Ha o/ 06+ (N /) Hpyy s,
“5MN2 = Jpne—O0H 5, /08— (MT/a) Hyy g (9.8)
—5MN3 = Junst (Mn/a) Hy o — (N1 /b) Hyp .

The above interpretation of the electromagnetic part of the theory is particularly appropriate
for problems such as an elastic rectangular wave guide in which the surface of the rod acts as
a perfect conductor so that

To discuss the propagation of waves in a general anisotropic elastic wave guide it is necessary
to limit the number of variables used to represent the electromagnetic fields. We choose

Dﬁz

EOII E~ E E113’ DOll’ DlO2’ Dlll’ D112’ Dll3’
101> H H 013’ Hlll’ HIIZ’ 113> (910)

BlOl’ B 012> BOOS’ B103’ B013’ Blll’ B112’ Bll3’

]

mz

with corresponding electromagnetic field equations in (9.7) and (9.8). Then, with these
equations, with the mechanical equations of motion (7.2) and with the constitutive equations
(6.26) and (9.4), discussion of isothermal wave propagation in the elastic wave guide is a
straightforward but lengthy procedure. We do not consider this in detail, but note only one
special case of a rigid isotropic wave guide. For this case it is possible to retain all the
electromagnetic vectors with constitutive equations

EMNi = eEMNi> Byni = MHMM" (9.11)

where ¢, u are the isotropic coefficients. Then, from (9.7), (9.8) and (9.11), the frequencies
w of wave propagation are given by

pew? = k24 M2n2/a® + N?n/b2, (9.12)

where 2n/k is the wave length and M, N =0,1,.... The result (9.12) is, of course, the well
known exact solution found directly from the three-dimensional equations. If the number of
electromagnetic variables in the one-dimensional theory is limited to those in (9.10), then we
recover (9.12) in the isotropic case for the values M, N =1,0; 0,1; 1, 1.

10. PIEZOELECTRIC ROD: AN ALTERNATIVE FORMULATION FOR
RECTANGULAR CROSS-SECTIONS

For rods with rectangular sections it may be more convenient to deduce the isothermal
piezoelectric equations from the theory of §9, rather than use the piezoelectric equations of
§8. If the restricted mechanical theory of §6 is used here, and with magnetic fields absent from


http://rsta.royalsocietypublishing.org/

o \

p &

JA \

THE ROYAL A
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

| A

/A

THE ROYAL
SOCIETY

PHILOSOPHICAL
TRANSACTIONS
OF

Downloaded from rsta.royalsocietypublishing.org

342 A.E.GREEN AND P. M. NAGHDI

all constitutive equations in (6.26), we again have B,;,; = 0. Let ¢ be the applied potential
at the surface of the rod and define

Pun = §¢¢M(§1) V() A8, Gy = §¢XM(§1) o) de, (10.1)

where M N, ¥M ¥V are given by (9.2). Equations (9.34, ¢, d, f, g) still hold and the relevant
electromagnetic field equations reduce to

EONI = '“50N> EMoz = ¢M0>

Na —
Eyne = 7 (Epni+Pun) T Puny (M #0), (10.2)
a 0O -
Eyns= M 3C (EpnitPmy) (M #0, N#0)
and 9D—§4§IE=MZEBMN1+%’3 Dyne (M,N=1,2,..). (10.3)

The constitutive equations are given by (6.26), part of (6.27) and (9.4). Since, in a given
problem, ¢, and @, » are specified, the only unknowns in (10.2) are Ey; 5, (M, N = 1,2,...).
With the constitutive equations, these unknowns are determined by equations (10.3), together
with suitable initial and boundary conditions. In such piezoelectric problems we usually need
to know the surface values of D?. These may be found from the representations

5|

= 2 EMNI X&) %N(?%

M=0, N=1

2|

= X Dy, y™M(EH V), (10.4)

M=1, N=0

= 2 5MN3 '/’M(?) %N@z)
M=1, N=1

2l

The results reported here were obtained in the course of research supported by the U.S. Office
of Naval Research under Contract N00014-75-C-0148, Project NR 064-436, with the University
of California, Berkeley (U.C.B.). One of us (A.E.G) held a visiting appointment at U.C.B.
during 1983.

APPENDIX A

This appendix contains a brief summary of the three-dimensional theory of electromagnetism
of moving deformable media. In particular, consequences of all local field equations which result
from the conservation laws are recorded in order to provide some background information for
some aspects of the developments in §§3 and 4 of the paper.

Consider a body # consisting of particles X, and let %, be the configuration of # at time
t and %y a reference configuration. Points in the reference configuration are specified by the
position vector X *. A motion of 4 is defined by a sufficiently smooth vector function x* which
assigns to each X the place x* = y*(X*,{) in the configuration %, and v* = y*(X*,?) is
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ELECTROMAGNETIC RODS 343

velocity. The spatial forms of the electrodynamic and thermodynamical field equations in the
three-dimensional theory are:

curl* e* = — (b+b div* v* —L*b), div*b =0, (Ala,b)
curl* h* =j*+¢i+¢fdiv* v¥—L*d, divd =, (A 1¢,d)
p¥+p* div¥o* =0,
p*o* = p*(f*+f¥)+div* T, t= Tu,
p*r¥+T—TT =0, (A 2)
pFI* = p*(s* +£%) —divp*, k* =p*-u, h*=gq* u, q*=0%p*,
p*r* —div¥ g* —p*e* + p*w* + T-L* +1p*T*-L* = 0,
where div*, curl* are the divergence and curl operators with respect to the place x* and

L* =0v*/0x*, T@'fz=ckxz (A 3)

for every vector z. Also, in (A 1) and (A 2) the temperature is denoted by 6* (> 0), p* is
density, f * is external body force density, f¥ is body force density, ¢¥ is body force couple density
due to the electromagnetic field, ¢ is surface traction across a surface in the configuration at
time ¢ whose unit outward normal is u, £* is flux of heat, £* is flux of entropy, €* is internal
energy density, #* is entropy density, r* is external volume rate of supply of heat density, s*

*

is external volume rate of supply of entropy density, w¥ is volume rate of supply of

electromagnetic energy density due to the electromagnetic fields, e is electric field vector, d
is electric displacement vector, h is magnetic field (axial) vector, j is current density, ¢ is free

charge, and -
e* =e+v*xb, h*=h—vxd, j*=j—ev* (A 4)

The symbol d is used instead of d to avoid confusion with the notation for directors.
Corresponding field equations in material form are

Curl*E = —B, Curl*H= 5+j, Div¥B =0, Div*D =E,

PrO* = pr(f*+f &) +Div* Ty, tg = Tyug,

pp T¥+ Ty F¥T—F*TT = 0, (A 5)

pPr1* = pr(s* +£&*) —Div* pf,
k§ =P§'uR> hlﬂi = 4qgR "UR; qﬁ = ﬁ*pﬁ,

phr*—Dive gf—pf % +pfut + T F*+}pf I L* =0,

where Div*, Curl* are divergence and curl operators with respect to X *, pf is reference density,
ty is surface traction across a surface in the configuration at time ¢ measured per unit area of
the corresponding surface in the reference configuration whose unit outward normal is ug, A%
is flux of heat and % is flux of entropy, measured per unit area of the reference surface, and

F* =Qp*/0X*, p§ =T*p* TI'*=detF* >0,
I*T = Ty F*T, I'*p* = F*p% I'*q* = F*qy,
E=F*Te* H=F*Th* D=T*F*1d, B=T*F* b,

E=T*e, J=TI*F*Y*
23 Vol. 314. A

(A 6)
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344 A.E.GREEN AND P. M. NAGHDI

In the development of rod theory from three-dimensional equations, it is convenient to
introduce ¢ (i = 1,2, 3), with £ = {, as a system of curvilinear coordinates in the reference
configuration #y and to use these coordinates as a convected system for the body in its

configuration 4,. Then . .
X* = X*(), «*=ax*{1),

G, =0X*/0f!, g;=0x*/0C,

GG, =8, gi-g;=0, G;=G;G, GI=GG,
=88 £1=g"¢, £=1I[8288] G =[GG,Gy,
F*=g,®G', g, =F*G, G'=F*Tg,
I'*=detF*=g/G:, L*=g,®g,

where g;, g% are covariant and contravariant base vectors, respectively, g;;, ¢ are covariant

and contravariant metric tensors, respectively, in the configuration 4#,, and ¢} is the Kronecker
delta. Corresponding quantities for the reference configuration are G;, G, G, G". Also,

u=ug =ug, ug=ug;G'=uxG, p=p*g=piG,
tt=Tg, th=TxG, Ti=gt!=GCGith, T=tQRg, Tyz=th®G,
gddiv* T=GiDiv* Ty = T' ,, (A 8)
p* =p*"g; pPR=pR G, P'=gp* =Gy’
g divp* = G Divpf = Pt

where a comma denotes partial differentiation with respect to ¢*. The electromagnetic vectors,
when referred to various bases g¢, G, etc. can be expressed in terms of their components as

e* =c¢¥gl, h*=1h}g!, E=E,G', H=HG,
d=d'g, b=1i'g, D=D'G, B=BG, (A9)
J*=*g, J=J'G
so that, with the help of (A 6), we have
E;=¢f, H,=h}, D'=GD'=gd!, B'=GiB = git
Ji = Gt = gij*i, E = GIE = ghe.

Finally, we need values for I'¥, ¢¥, f* and w¥ used previously by Green & Naghdi (1983), which
were a slight modification of those derived by Hutter and van der Ven (1978). Thus,

p*rE=T,—T¢, p*ci=g;xt, t.=T.¢g,
T,=e*Q@d+h*Q@b—Le,e* e*+pu,h* h*)I,
P¥f¥ = ce* +j* x b+ (d—¢,e*) Ve* + (b—pu, h*) Vh*
+dx b+ (dxb) divkv*+L¥T(dx b), (A 11)
p*wk +1p*F* - L* = T, L* +e* j* + e*- (d+d div* v* — L*d)
+h* (b+b div* v* —L*b),
pEwk+ipk [* L* = Ty F*+E-J+E-D+H B, I'*T,= Ty, F*T,

(A 10)

where €, u, are the electromagnetic coefficients for vacuum.
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ArPENDIX B

The purpose of this appendix is to provide some formulae which arise in the development
of rod theory from three-dimensional equations given in Appendix A. Formulae of the type
obtained here have been given previously in the context of thermomechanical theory (see Green
& Naghdi 1979). However, in this appendix, we provide slightly more general formulae which
include results from electromagnetism, and there is some change in notation. The mechanical
theory is restricted to a Cosserat curve with two directors, but more generality is allowed in
the thermal and electromagnetic effects. We suppose that position vectors and temperature in
the reference and in the current configurations of the body are specified by

X*=R+Aa(§l>§2)Dw R=R(§), Da:'Da(g)a €3=§> )
O, =), d, =G0,

, (B 1)
0 =0+ 5w () Oprs 0= 0G0, Oar = Ouun(Go0),
pt=pt =1, /

in the region §, < { < {,, where Greek indices take the values 1 and 2, capital Latin indices
M, N are integers or zeros, and M+ N = K. The curve {* = 0 is identified with the curve ¢
in the theory of §2 and the rod occupies some neighbourhood of ¢ bounded by the surface

F(&,8%) =0, (B 2)
which is such that { = constant are sections of the rod bounded by closed curves in this surface.
In Green et al. (1974) and Green & Naghdi (1979), slightly more generality was allowed, by
choosing F(£', &%, &%) = 0, but the form (B 2) is sufficient for our purpose.

Then, using the notations and definitions of §2, and Appendix A, we have

A= pa%3 = pp A?m = ff,u d4, d4 =dg§de,

ao = ag = [ [, pas, ®3)

Nyh = dghe = f [r@e e e ua

the double integrals being over the surface { = constant bounded by (B 2). Also

n=nidy = wndi, = [ [ 1204,
m = metdh, = pm= Al = f f ToA(¢, £2) d4, (B 4)
ke = kS, = nkdh, = f f T” ?.Ua%@ a4,
v = [[nrrasrdrap—r2aen, a7 = [[urzaa)
A= [ [wrorei, e aa+ o0 (1 ae - Trag, (8 5)
A= [[wrereeya, ae, = [ [ueraa, )
-
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346 A.E.GREEN AND P M. NAGHDI
Ao = ff/»(w;“+%F;"'L*)dA,
Ay = f f up*dd, gy = H/m*ﬂ“(é‘) #N (§%) d4,
pim [ [ ar—fmac—reae,
N = [ [t o @) aa—furieny g ) (rag—magn,\ o

A= [ [ueraa

Neuun = [ [ v @y aa [ p W ELEE 4

b= [[Pan by = [ [Pumen mve aa,

where the line integrals are along the intersection of the surface (B 2) with { = constant.
Previously, in Green & Naghdi (1979), we have used powers of {!, % in our study of the
thermomechanical equations, i.e.

AAELE) =& WM = (WM, Y (&) = (&)Y,

although the notational arrangement was different. For discussion of the electromagnetic
equations it is convenient to introduce two other sets of functions Y™ (&), ¥V (&), y™M (&),
¥V ({?) with the properties that

dX™(@&) _ 5 omgreny, WME) S wokp
XK e, 2 YR xH (Y,

gt gL dg* K=0
V(¢ _ X aghee) N (B7)
dez = K2=0 XRYE(L), —d—g‘g‘— = K2=0 U XK.

We first consider the spatial forms (A 1) of the electromagnetic field equations. Multiplying
(A 1b,d) by ¥M (&) ¥V (&) and Y™ (&) YN (&?), respectively, and integrating over a material
region #* in the configuration at time ¢ gives

[ repi@ b= [ HEXE oy,
ap*

P g
AN AllS B
@) e dda= | e e+ S o gl
o P
Next we take the scalar product of (A 14a) with
yMEH RV () g xMEH PN (&) g AME) XN (L) & (B9)
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ELECTROMAGNETIC RODS
respectively, and integrate over Z*. This yields the equations

A ey @ g bdu= [ yM(0) () [g x e*-da]

dt J s g

[ ey M e an

%J;* YM (&) %N(?)g% bdv = Lg, XM (&Y %N(&) [¢2 X e* - da]

_J‘y* dXd§1 ¢N (&) [g'g%e*] dv,

%fg* XM (&) ¥V (&) b do = f ¥M (8 7N (&) [g° x e* - da]

oP*

_.L* [{dXM(§1) XN (&) gt +xM(Eh dx” (&%)

agt

Similarly, we take the scalar product of (A 1¢) with

XM PN &) g PME RV (&) g YT PN &

respectively, and integrate over Z*. Thus, we obtain

d

g e eeda = [ e i e e

' \

A

| A

THE ROYAL A
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OF

f M) PN (g gt dv

f y ) [g'g*h*] dv,

d§2

_—(% J;u UMY 7N (&) g2~Jdv = L@* ¢M(€l) XN(§2) [g2 x h*-da]

+ f YL XV (82) g2 j* do
QML) o

—fg* det XN (&) [g'gh*] dv,

_%jy* adte %N({;Z) Bdy = Lg‘* YM (g IFN(?) [¢° x h*-da]

+L,* YM () PN (8 j* gt dv

S et res

dgﬁ (&

+yM (&Y e } x g3 h*] do.

347

(B 104)

(B 104)

g2} xg3'e*] do.

(B 10¢)

(B 11)

(B 12a)

(B 125)

(B 12¢)
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348 A.E.GREEN AND P. M. NAGHDI

Similarly, from the material equations (A 5) we may obtain equations of the same form as
those in (B 8)—(B 12) if we replace 2*, 02*, dv, da, e*, h*, ¢, b', d%, a;, g' in these equations
by r2?*, 0x?*, dV, d4, E, H, E, B', D¢, A,, G¢, respectively.

The equations (B 8), (B 10) and (B 12), and their material counterparts, are now applied
to a rod-like region bounded by the surface (B 2) and the surfaces { = {;, { = {,. The resulting
integrals are along the curve ¢* = 0 bounded by the ends { = {,, { = {,. The integral balances
in spatial form are

§2 §2 M N
[ bt tbunovig = [ (2 b+ Z Wbt} s 1)

1 =0
o3 _ [ M _ N
L dynds+[dyn- "]gi = L (eMN+ KZ-;O YR dgn+ X YR dMKz) ds, (B 14)

d (& &3 , N
a—tL byntds = [al'ej\“,INxv]§:+J (a§3eMN1+ 2 X%e;';}xg)dga

¢ K=0
d (& 2 2. % ¢ L RPN O Y
ET byn®ds = [a® ejy X "]gj"' By n®— 2 XK ¢kns)dE, (B 15)
& & K=0
d [% 3 &, ;3 x M % - N %
di byn®ds = Ggeyn®t+ X XK ¢hkne— 2 X ek ) 46,
& & K=0 K=0
d (&, 1 1. 3% ¢ gz'*1 & X | N_N*
T dyn'ds = [a ’hMNx"]gi"' Juntds+ @yt + 2 YR hyrks ) dE,
gl gl §1 K=0
d & - [ . [ N , M
T . dy Nt ds = [az'hi‘4wxv]§f+L J;tk/INZdS"‘L (a3ghpyn®— 2 'ﬁlz‘(/] h;}Na) dg, (B 16)
1 1 1 =0
d (O [ ” [ L, M Mo N — N
T dyrn®ds =J Jun® ds+f (@ b+ 2 YK Mena— 2 ¥R thlKl) d¢.
§1 gl §1 K=0 K=0

In the foregoing equations
[ADIE = S&) =A&)-

Similar equations may be derived in material form. In equations (B 13)—(B 16), and in the
corresponding equations in material form, we use the following definitions

Dyt = dgdynt = A Dyt = J f DyM (YN () d
Dyt = dhgdyn® = Ak Dy _”DWM &) N (&) d4, (B 17)
By = dhadun® = Aby D = [ [ D107 (@2
Byn' = = aig by n' = A§3 MN' = ffBl¢M ¢y xN (¢ d4

Bon® = dhy by = Ak Byg® = J J B (£1) P (83) d A, (B 18)

Bon® = dhy bpg® = Abs By = f f BoM (£ ¥ (&%) dd,
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ELECTROMAGNETIC RODS
Eyrr = s = f f E, xM(8) (&) dd
Eyne = ezT/_er = JJEz 'ﬁM(é’l) —)ZN(?) d4,

Eyins = e3rns = JJE3 ad(e) %N(gz) d4

Hygno = o = [ [ @) 5@ a4

Hygna = e = [ [ Hi0 (@) 7@ a4,

Hygs = hiyns = f f Hy M (80 7Y (&) dA
Tyt = dhy it = Ay Tyt = f f T () PN () dA
jMN2 = a.%isleJNz = A?l%s JMN2 = Jf jz'ﬁM(?) XN(§2> d4

jMN3 = a.éisjlal‘st = A%s Jun®= JJ js'ﬁM(?) K}—N(é’z) d4

EMN = a%a eMN = A%s Eyn= ffE¢M(§1) %N(gz) d4
&t = A Ey = 3€¢M &) FN(&) e dE,

&y ehan? = AL Byt = §§xM<§1> PN @) erdl,

By ehrn® = ALy Elyy® = —gﬁxM(él) T (&) (Al + et d?),

&yt = 45 gyt = ffo@l) PV (@) g,

B Hyn® = AL Hip? —gﬁwM &) dge,

oy = Al Hign? = = QIO PYE) (a0 a8 a),)

dhybhax = Ay Bran = 2@ (@) (Brap— Brag,

By diygy = A, Dy = gﬁv/fM(gl) PN (@) (D ag— Drdg).

349

(B 19)

(B 20)

(B 21)

(B 22)

(B 23)

(B 24)
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350 A.E.GREEN AND P. M. NAGHDI
In addition
eyn = eirni a', hin =N a’, byy= bMNi a;
dyy =dyn'a; Jjin = Jin' 2
Eyy=EyniA', Hyy=Hyy A", Byy=Byy'4;
EMN = D_MNi A, Jun= Jun' A, (B 25)
Eyy=FTefy, Hyy=F"hjy, I'byy=FByy,
FJMN =FDyy, 1jyn=Fun: Teyn=Eyn,
F= 2;® A, I'= a:ézs/A%;:;

and a;, a’ are the system of orthogonal vectors and their duals defined in (2.6) with 4, A4’
the corresponding vectors in the reference configuration. Also, v is defined in (2.7).

Finally, in this appendix, we record some results which arise when the position vector,
velocity vector and electromagnetic vectors have the representations (B 1) and

L — ~

e* g =E-G, = X y"(L) P& By,
L

e* g, =E'G,= X ML) ¥¥(E) Py

L
e* g, =E-G;= KZ_: YM(EY) PN (E) Enrnss
- (B 26)

&~

h* g, =H G, = KZ=0 M (g XN (&%) ﬁMNl’

L
h* g,=H G, = Kz=:0 xM(&Y 'ZN((:Z) HMNZ!

L
h* g, =H G, = KZ=0 XM (&Y) XN (8?) Hprwss

for M+ N = K. The coefficients £y, ;, Hysn; are related to the quantities defined in (B 19)
and (B 20) by the equations

L L
EMNi = X I%)NRS ERSi! HMNi = X K%)NRS Hpgi (B 27)
R+S=0 R+S=0
where e = [ [oney g xre) o) da = ki)

e = [ [ g wre) x5 @) a4 = K,
(B 28)
s = [ [y @ wreey e aa

KMNRS — f [ xve xrey o aa
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ELECTROMAGNETIC RODS 351
From (A 11), (B 26) and (B 4) it follows that

M+N=0

L 2 ~ A .
”M(w2‘+%1"3"L*) d4d =P+ h) (‘]MNi EynitEmniDyn'+Hyni Byn'), (B 29)

where P, =n 0v/0{+k: w,+m% 0w,/ (B 30)

and n,, ... are related to the three-dimensional electromagnetic stress vector T, by formulae
of the form (B 4) and (A 11). Also,

Jf,uc;"dA=a3><ne+daxkg+a—ad§~“xmg. (B 31)

AprrENDIX C

We record in this appendix some results for the linear three-dimensional theory of a magnetic
polarized thermoelastic solid, which will be of help in identifying constitutive coeflicients arising
in rod theory. The solid, in its reference state is homogeneous, at constant temperature 6, is
unstressed and free from electromagnetic fields, but is anisotropic. We use rectangular Cartesian
axes x; along a constant orthonormal system of vectors e;, and use standard vector and Cartesian
tensor notation throughout this appendix. In the linearized theory, temperature is specified
by 6+6%*, p* is reference density, u* =ufe;, is infinitesimal displacement vector,
% = 3(uf;+uf ;) is infinitesimal strain, ¢;; is symmetric stress tensor, 7* is entropy density, ¥
is free energy density, £* is internal rate of production of entropy density, p* = p¥ e, is entropy
flux vector and E = E,e;,, H= H,e;, D = D,e;, B= B,e,, ] = J,e,, E are electromagnetic

e

variables.
The constitutive relations in the linearized theory are given by
PRU* = Seijrs € 75— C 035 0% — 300*°
*%ﬂs Er Es—%grs Hr Hs_hrs Er Hs
—k e;ksEt—lrste;ksHt-l_ﬂEra*+ngr6*> (C la)
Ciy 0% — kg £, — Ly Hy,

rst

— * __
tij - 6ijrs rs

P*ﬂ* = c'b'j ez_f;* Er_gr Hr+€6*’
D_r = frs Es+hrs Hs+ki7'r e;k?' _f"‘ 0%,
B, = g, Hi+hy Eg+1y, ef5—g, 0%,

(C 1b)
by =—k;0%—a, E,
Ji E—pF 0% = p*(0+06%) £* > 0, (C2)

In (C 1) and (C 2), the notation ( ) ; denotes partial differentiation with respect to x;, and
the various coefficients are constants and subject to the following restrictions:

i = G
(G 3)
ﬁs =ﬂ1" grs = gsr’ krst = kSTt’ l'rst = lSTt'

Cigrs = Ciirs = Cijsr = Crsijy €
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352 A.E.GREEN AND P. M. NAGHDI
In making use of the above results, it is convenient to express them in a partially inverted
form, i.e.
e;,l;' zyrst +S 0* kwt zyt Ht’

pEN* = sy ty—f T E,— g H+c*0%,

Dr = kzjr i . *0* f;ksEs_h:‘sHs’
B, = — Uty g;kﬁ*—/l;‘rEs—g:‘ng,

ijr “ij

where the coefficients have symmetry restrictions similar to the corresponding coefficients in

(C 3). Also,
Cijrs Srsmn = 3(0im 3jn +0;p 3jm)> )
CijrsSps—C5 = 0, c—c*+¢;5, =0,
Cijrs krse T ki = 0, Cijrs sy + lige =
F=Jr— ik & =&y lijr>
Srt+fs = kijrkfisr it heg = kyyy lia;m

g;ks +8s = lijr lz*js’

with similar formulae in which ¢;,, ¢;; are interchanged with s;;,., 55, respectively, and in which
starred and unstarred quantities are mterchanged.
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